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Cache timing attacks

•Common side-channel: Cache timing attacks︎ 

• Exploit the latency between cache hits and misses ︎ 

•Attackers can recover cryptographic keys


• ︎Tromer et al (2010), Gullasch et al (2011) show efficient attacks on AES 
implementations 


• ︎Based on the use of look-up tables

• Access to memory addresses that depend on the key 
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Constant-time programs 
Characterization

• 	Constant-time programs do not:

• branch on secrets

• perform memory accesses that depend on secrets 

• There are constant-time implementations of many cryptographic 
algorithms: AES, DES, RSA, etc
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    if (code[i] != secret[i]) return false;
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Verification of constant-time programs 
Challenges

•Provide a mechanism to formally check that a program is constant-time

• static tainting analysis for implementations of cryptographic algorithms


•At low level implementation (C, assembly), advanced static analysis is 
required 

• secrets depends on data, data depends on control flow, control flow 
depends on data…


•A high level of reliability is required

• semantic justifications, Coq mechanizations… 


•Attackers exploit executable code, not source code

•we need guaranties at the assembly level using a compiler toolchain
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Background: verifying a compiler

CompCert, a moderately optimizing C compiler usable for critical embedded 
software 


= compiler + proof that the compiler does not introduce bugs 


Using the Coq proof assistant, X. Leroy proves the following semantic 
preservation property:


 

 

 

For all source programs S and compiler-generated code C, 
if the compiler generates machine code C from source S, 
without reporting a compilation error,  
then «C behaves like S».
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For all source programs S and compiler-generated code C, 
if the compiler generates machine code C from source S, 
without reporting a compilation error,  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does not deal with the  
constant-time security property ! 6



CompCert: 1 compiler, 11 languages

type elimination

loop simplifications

CFG construction

expr. decomp.

spilling, reloading

calling conventions

Compcert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

side-effects out

of expressions

stack allocation

of «&»variables

Optimizations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 

instruction

selection

register

allocation (IRC)

linearization

of the CFG

layout of

stack frames

asm code

generation

(instruction scheduling)
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Where should we perform  
the constant time 
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Our approach

1. Analyse the program at source level 
 
 
 
 
 

2. Make the compiler preserve the property

G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, A. Trieu. 
Formal verification of a constant-time preserving C compiler.  
POPL 2020.

Sandrine Blazy, David Pichardie, Alix Trieu. 
Verifying Constant-Time Implementations by Abstract Interpretation.  
ESORICS 2017.
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Constant-time analysis at source level

We perform static analysis at (almost) C level

•Based on previous work with a value 
analyser, Verasco


•We mix Verasco memory tracking with fine-
grained tainting

The Coq proof assistant

Cminor

RTL

Compcert C

x86

LTL

Mach

Verasco static 
analyzer + tainting

Sandrine Blazy, David Pichardie, Alix Trieu. 
Verifying Constant-Time Implementations by Abstract Interpretation.  
ESORICS 2017.
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 http://verasco.imag.fr

The Verasco project 
INRIA Celtique, Gallium, Antique, Toccata + VERIMAG + Airbus  
ANR 2012-2016

Goal: develop and verify in Coq a realistic static analyzer by abstract 
interpretation


• Language analyzed: the CompCert subset of C

• Nontrivial abstract domains, including relational domains

• Modular architecture inspired from Astrée’s

• To prove the absence of undefined behaviors in C source programs


Slogan: 

• if « CompCert ≈ 1/10th of GCC but formally verified », 

• likewise « Verasco ≈1/10th of Astrée but formally verified »
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Verified Static Analysis
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 Logical Framework 
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Soundness Proof 
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Analyzer Spec. 
(abstract interpr. 

methodology)

Analyzer 
Implementation 

(manual)

extraction

.exe
analyzer



Verasco 
A Formally-Verified C Static Analyzer

numbers

CompCert compiler

states

control flowAbstract interpreterAlarms

Numerical abstraction

Compcert C Clight C#minor Cminor RTL ASM

Memory abstraction

JH. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie.  
A Formally-Verified C Static Analyzer.  
POPL 2015.

S. Blazy, V. Laporte, D. Pichardie.  
An Abstract Memory Functor for Verified C Static Analyzers.  
ICFP 2016.
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numbers

Verasco 
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals 

Nonrel→ Rel Nonrel→ Rel
Symbolic 

equalities

Convex 

polyhedra

CompCert compilerC#minorClightCompCert C ...
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VERIMAG work

transforms any rel. domain 
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Verasco 
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals 

Nonrel→ Rel Nonrel→ Rel
Symbolic 

equalities

Convex 

polyhedra

conjunctions of linear 
inequalities ∑ai xi ≤ c


[SAS’13]

CompCert compilerC#minorClightCompCert C ...

VERIMAG work
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Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals 

Nonrel→ Rel Nonrel→ Rel
Symbolic 

equalities

Convex 

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

symbolic conditional 
expressions


(improve precision of  
assume commands)

14



numbers

Verasco 
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals 

Nonrel→ Rel Nonrel→ Rel
Symbolic 

equalities

Convex 

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

transforms any non-rel. domain 
into a (reduced) rel. domain

14



numbers

Verasco 
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals 

Nonrel→ Rel Nonrel→ Rel
Symbolic 

equalities

Convex 

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

crucial to analyze the safety 
of memory accesses 
 (memory alignement)
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statesMemory & value domain
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VERIMAG work
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double-precision floating-point 

numbers (IEEE754)
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Verasco 
Implementation

34 000 lines of Coq, excluding blanks and comments 

• half proof, half code & specs

• plus parts reused from CompCert 


Bulk of the development: abstract domains for states and for numbers 
(involve large case analyses and difficult proofs over integer and floating 
points arithmetic)


Except for the operations over polyhedra, the algorithms are implemented 
directly in Coq’s specification language.

transfert function

checker

untrusted solver

= formally verified
= not verified

transfert function
External solver with verified operatorFully verified operator
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Constant-time analysis at source level

states

numbers

control flow

CompCert  
compilerC#minor… ...

Memory & value domain

Numerical domain

Abstract interpreter
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Abstract interpreter

taintsTaint domain
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Experiments at source level (ESORICS’17)

Verifying Constant-Time Implementations by Abstract Interpretation 13

4.2 Cryptographic Algorithms

We report in Table 1 our results on a set of cryptographic algorithms, all executions
times reported were obtained on a 3.1GHz Intel i7 with 16GB of RAM. Sizes are
reported in terms of numbers of C#minor statements (i.e., close to C statements),
lines of code are measured with cloc and execution times are reported in seconds.

Example Size Loc Time
aes 1171 1399 41.39
curve25519-donna 1210 608 586.20
des 229 436 2.28
rlwe_sample 145 1142 30.76
salsa20 341 652 0.04
sha3 531 251 57.62
snow 871 460 3.37
tea 121 109 3.47
nacl_chacha20 384 307 0.34
nacl_sha256 368 287 0.04
nacl_sha512 437 314 1.02
mbedtls_sha1 544 354 0.19
mbedtls_sha256 346 346 0.38
nbedtls_sha512 310 399 0.26
mee-cbc 1959 939 933.37

Table 1: Verification of cryptographic primitives

The first block of lines gathers test cases for the implementations of a
representative set of cryptographic primitives including TEA [36], an imple-
mentation of sampling in a discrete Gaussian distribution by Bos et al. [10]
(rlwe_sample) taken from the Open Quantum Safe library [30], an implemen-
tation of elliptic curve arithmetic operations over Curve25519 [6] by Lang-
ley [16](curve25519-donna), and various primitives such as AES, DES, etc.
The second block reports on different implementations from the NaCl library [7].
The third block reports on implementations from the mbedTLS [26] library.
Finally, the last result corresponds to an implementation of MAC-then-Encode-
then-CBC-Encrypt (MEE-CBC).

All these examples are proven constant time, except for AES and DES. Our
prototype rightfully reports memory accesses depending on secrets, so these two
programs are not constant time. Similarly to [2], rlwe_sample is only proven
constant time, provided that the core random generator is also constant time,
thus showing that it is the only possible source of leakage.

The last example mee-cbc is a full implementation of the MEE-CBC con-
struction using low-level primitives taken from the NaCl library. Our prototype is
able to verify the constant-time property of this example, showing that it scales
to large code bases (939 loc).
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Not handled by Almeida et 
al. because LLVM alias 

analysis limitations

Same benchmarks than 
Almeida et al.

J.B. Almeida, M. Barbosa, G. Barthe,  
       F. Dupressoir and M.Emmi.
Verifying Constant-Time Implementations.
USENIX Security Symposium 2016.
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Preserving the property through compilation

G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, A. Trieu. 
Formal verification of a constant-time preserving C compiler.  
POPL 2020.

• Makes precise what secure compilation means for cryptographic constant-time


• Provides a machine checked-proof that a mildly modified version of the CompCert 
compiler preserves cryptographic constant-time 


• Explains how to turn a pre-exisiting formally-verified compiler into a formally-
verified secure compiler


• Provides a proof toolkit for proving security preservation with simulation diagrams
18



CompCert: 1 compiler, 11 languages

type elimination

loop simplifications

CFG construction

expr. decomp.

spilling, reloading

calling conventions

Compcert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

side-effects out

of expressions

stack allocation

of «&»variables

Optimizations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 

instruction

selection

register

allocation (IRC)

linearization

of the CFG

layout of

stack frames

asm code

generation

(instruction scheduling)
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CompCert preservation proof methodology 

• Each langage is given an operational semantics  that  models a small step 
transition from a state  to a state  by emitting a trace of external events .


• From this stems a notion of program behavior (event trace) for complete 
(possibly infinite) executions.


• Behavior preservation is proved via backward and forward simulation, but thanks 
to langage determinism, forward simulation is enough.

s t s′ 

s s′ t

20
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≈ ≈
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source state
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CompCert:17 preservations proofs

Compiler pass Explanation on the pass
Cshmgen Type elaboration, simplification of control
Cminorgen Stack allocation
Selection Recognition of operators and addr. modes
RTLgen Generation of CFG and 3-address code
Tailcall Tailcall recognition
Inlining Function inlining
Renumber Renumbering CFG nodes
ConstProp Constant propagation 
CSE Common subexpression elimination
Deadcode Redundancy elimination
Allocation Register allocation
Tunneling Branch tunneling 
Linearize Linearization of CFG
CleanupLabels Removal of unreferenced labels
Debugvar Synthesis of debugging information
Stacking Laying out stack frames
Asmgen Emission of assembly code 
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Cryptographic constant-time property: 
defining leakages

• We enrich the CompCert traces of events with leakages of two 
types

• either the truth value of a condition, 

• or a pointer representing the address of 


• either a memory access (i.e., a load or a store) 

• or a called function


• Using event erasure, from  we can extract


• the compile-only judgment 


• the leak-only judgment 


• Program leakage is defined as the behavior of the  
semantics

s t s′ 

s t
comp s′ 

s t
leak s′ 

leak
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Cryptographic constant-time property: 
 preservation

• We note  the fact that two initial states  and  share the same 
values for public inputs, but may differ on the values of secret inputs 


• A program is constant-time secure w.r.t.  if for two initial states  
and  such that  holds, then both leak-only executions starting 
from  and  observe the same leakage

φ(s, s′ ) s s′ 

φ s
s′ φ(s, s′ )
s s′ 

s′ 

s
φ

t

t′ 

*

*
t t′ =impliesleak

leak
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Cryptographic constant-time property: 
 preservation

• We note  the fact that two initial states  and  share the same 
values for public inputs, but may differ on the values of secret inputs 


• A program is constant-time secure w.r.t.  if for two initial states  
and  such that  holds, then both leak-only executions starting 
from  and  observe the same leakage

φ(s, s′ ) s s′ 

φ s
s′ φ(s, s′ )
s s′ 

Main Theorem (Constant-Time security preservation): Let  be a safe  
Clight source program that is compiled into an x86 assembly program . 
If  is constant-time w.r.t. , then so is .

P
P′ 

P φ P′ 
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• We can build secure 
programming abstractions at 
source level (C-like)

• We make sure the compiler will 
generate executables that are as 
secure

• We reduce as much as possible 
the TCB (Trusted Computing 
Base) with formal proofs 
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