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! What is security and privacy research?
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$ Quantification of Kin Genomic 
Privacy for the Masses

! # (/)

M. Humbert, D. Dupertuis, M. Cherubini, and K. Huguenin. Quantification of Kin 

Genomic Privacy for the Masses. Major revision for USENIX Security Symp. 2021.
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Genome / DNA:

≈3B pairs of nucleotides
(A, C, G, T)

SNP:

• Position where individuals’ genomes can differ

(≈150M SNPs)

• Combination from two values: “m” (minor allele) 

and “M” (major allele).

Three possibilities “MM”, “Mm”, “mm” (ordering 

does not matter)

• Population statistics on allele frequencies (MAF)
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% Genomics

Source: https://www.23andme.comSource: https://www.ancestry.com/dna/



Your genome influences your physical appearance, but also your non-visible attributes,

such as your predisposition to certain diseases or behaviors. It is is immutable.
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Your genome influences your physical appearance, but also your non-visible attributes,

such as your predisposition to certain diseases or behaviors. It is is immutable.

This information can also be used to discriminate against you, for example, to deny you

a health insurance, a job or a loan. It also creates (national) security threats.
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Source [FR]: https://www.rts.ch/info/sciences-tech/medecine/10779718-
des-tests-adn-pour-connaitre-les-risques-de-developper-une-maladie.html
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Source: https://www.nytimes.com/2019/12/24/us/military-dna-tests.html

Source [FR]: https://www.rts.ch/info/sciences-tech/medecine/10779718-
des-tests-adn-pour-connaitre-les-risques-de-developper-une-maladie.html
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% & ♀♂! Kin genomic privacy

Source: Humbert et al., CCS, Nov 2013
Source: ! 10.1145/2508859.2516707 

In each pair of nucleotides in your genome, one nucleotide/allele is inherited from

your mother and the other from your father.

Hence, your genome is directly linked to those of your parents and to those of your

children, but also indirectly to those of all your family members.
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% & ♀♂! Kin genomic privacy

Source: https://www.technologyreview.com/s/602946/do-your-family-members-
have-a-right-to-your-genetic-code/



• Concept:

1. * Model family tree as a knowledge graph (Bayesian network)

2. + Input the data of the sequenced relatives

3. , Perform inference using the graph

4. - Quantify privacy according to inference error
18
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• Concept:

1. * Model family tree as a knowledge graph (Bayesian network)

2. + Input the data of the sequenced relatives

3. , Perform inference using the graph

4. - Quantify privacy according to inference error

% ♀ mm Mm MM mm Mm

...

' ♂ mm mm mm Mm Mm

mm 1 0.5 0 0.5 0.25

...Mm 0 0.5 1 0.5 0.5

MM 0 0 0 0 0.25

% ♀ mm Mm MM

𝑝! 2𝑝(1− 𝑝) 1− 𝑝 !
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! Enable everyone to evaluate their kin genomic privacy in a simple

and interactive way for real and hypothetical scenarios
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◎ Objective



• For each SNP (and associated MAF) :

1. . Consider all possible configurations of SNP values (mm, Mm, MM) 

for each sequenced individual

2. , Compute the posterior distribution for the target

3. - Quantify privacy according to the remaining uncertainty
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privacy = 1 −
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! Contribution #1: Quantify without data

! by considering all configurations 



• For SNP rs753426

• MAF(rs753426) = 0.1

• H(!You) = 0.7580 [prior]

!Father !Mother P(!Father,!Mother) P(!Target | !Father, !Mother) H(!Target | !Father, !Mother)

MM Mm mm

MM MM 0.6561 1.0 0.0 0.0 0.0

MM Mm 0.1458 0.5 0.5 0.0 1.0

…
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" Concept: Example



3! configurations, ≈500k SNPs
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" Concept: Complexity & Execution time

𝑁: number of sequenced relatives in the family tree



3! configurations, ≈500k SNPs
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" Concept: Complexity & Execution time

𝑁: number of sequenced relatives in the family tree

! Contribution #2: Make quantification

! “scalable” with optimizations



# Remove individuals whose genomes do not matter when

# inferring the target’s genome (knowing those of the others)
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# Remove individuals whose genomes do not matter when

# inferring the target’s genome (knowing those of the others)

3
!
→ 3

" configurations
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* Optimization: Simplification

𝑛: number of sequenced relatives in the simplified family tree



$ Detect impossible configurations early and stop exploring
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* Optimization: Pruning
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$ Detect impossible configurations early and stop exploring

!=? !=?

≤ 3" configurations
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* Optimization: Pruning

!=MM

!=mm



% Compute privacy for a few minor allele frequency values and 

interpolate for the other values (for each SNP)

41

* Optimization: Interpolation
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% Compute privacy for a few minor allele frequency values and 

interpolate for the other values (for each SNP)
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* Optimization: Interpolation
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# https://santeperso.unil.ch/privacy
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+ The tool

!
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, User study

Source: https://santeperso.unil.ch/

$ + % | & 413 users, 68 respondents | ! 2019 
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, User study
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, User study

! Contribution #3: Study users’ behaviors

! and perceptions
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, User study

$ + % | & 1822 users/respondents (Prolific) | ! 2020 

Asked before and after using the tool
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, User study
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, User study

! Contribution #4: Study users’ learning
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- Dissemination

Construisez  

votre arbre 

généalogique 

Indiquez les 

individus dont  

le génome  

serait connu 

Découvrez 

combien 

d’information 

les génomes 

des personnes 

choisies 

dévoilent sur 

le vôtre.

1QUE RÉVÈLE  
LE GÉNOME  
DE VOS PROCHES  
SUR LE VÔTRE  ?

Source [FR]: Mobile exhibition on personalized medicine https://www.santeperso.ch/Projets/A-notre-sante

!

Source [FR]: Video produced in collaboration with UNIL’s support 
center for teaching next-generation technologies (RISET) 

Source: https://santeperso.unil.ch/

/ Available on GitHub !



. Conclusion
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• " & ♀♂! Tackled an important interdependent privacy issue: 
kin genomic privacy 

• ! Produced an online tool and software library for 
quantification (without data)

• ) Conducted user studies for validation

• * Disseminated results and raised awareness



! Questions
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