
1

Which Abstractions for the Blockchain

Technology?

Emmanuelle Anceaume
CNRS / IRISA

emmanuelle.anceaume@irisa.fr
http://people.irisa.fr/Emmanuelle.Anceaume/

2

2008 : The Bitcoin white paper

3

An overview of Bitcoin

◮ Bitcoin is a cryptocurrency
and payment system

◮ It allows users to
anonymously exchange
goods against digital
currency

◮ All the valid transactions are
recorded in a public ledger,
the blockchain

◮ Allows anyone to audit
and check the integrity of
all the transactions

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

4

Public ledgers

No trustworthy centralized control.
Everyone

◮ maintains its own copy of the ledger

◮ disseminates all the transactions

◮ can read all the transactions

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Achieving

◮ consistency and availability of the ledger

While preventing

◮ transaction censorchip and counterfeiting (i.e.,
double-spending attacks)

5

Content of this talk

◮ The addressed problem
◮ Construction of a cryptocurrency and payment system with no

trusted third party

◮ Crypto Abstractions
◮ hash functions, digital signatures, hash pointers, Merkle trees
◮ Application : Bitcoin transactions

◮ Abstractions for a distributed cryptocurrency system
◮ Communication primitive
◮ Application : communication in Bitcoin
◮ Incentive mechanisms
◮ Application : minting process in Bitcoin
◮ Nakamoto Consensus
◮ Application : Construction of an immutable chain of blocks

◮ Conclusion

6

Which Abstractions ?

Crypto

primitives

Digital currencies

• A string of « 0 » and « 1 »

• No central bank to prevent double spending attacks

• Solution: rely on cryptography

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

7

1. Abstraction 1 : cryptography

◮ cryptographic hash functions

◮ digital signatures

◮ Merkle tree

8

1.1 Hash functions

A hash function is an algorithm that allows to compute a
fingerprint of fixed size from data of arbitrary size

H : 0, 1∗ → 0, 1n

M 7→ H(M)

◮ rather than manipulating data of arbitrary size, a fingerprint is
associated to each data which makes operation easier

9

1.1 Hash functions

A hash function satisfies the following properties

◮ The input space is the set of strings of arbitrarily length
◮ « hello world » and « hellohellohello world » are perfectly fine

inputs

◮ The output space is the set of strings of fixed length
◮ H(« hello world ») = 000223
◮ H(« hellohellohello world ») = 130554

◮ H is deterministic

◮ H is efficiently computable
◮ Given a string s of length n the complexity to compute H(s) is

O(n)

In addition to these properties, crypto-hash functions have
additional requirements

10

1.2 Properties of cryptographic hash functions

◮ Collision resistance

It must be difficult to find two inputs x and x ′ such that
H(x) = H(x ′)

◮ Second pre-image resistance

Given an input x , it must be difficult to find an input value
x ′ 6= x such that H(x ′) = H(x)

◮ Pre-image resistance

Given z , it must be difficult to find an input value x such that
H(x) = z

11

Collision resistance

collisions do exist

possible inputs

possible outputs

but can anyone find them ?

Image source: Bitcoin and Cryptocurrency Technologies.

12

Collision resistance

Find two inputs x and x ′ such that H(x) = H(x ′)

Generic attack (i.e., a technique capable of attacking any hash
function)

◮ Choose 2n/2 random messages

◮ Compute the hashed values and store them

◮ Find one pair (x , x ′) such that H(x) = H(x ′)

If a computer calculates 10, 000 hashes/s

◮ it would take 1027 years to output 2128 hashes, and

◮ thus 1027 years to produce a collision with probability 1/2

Astronomical number of computations ! !
So far no hash functions have been proven to be collision resistant

13

Collision resistance

Collision resistant hash functions allows us

◮ to identify data by its hashed value (i.e digest, fingerprint)
◮ if H(x) = H(y) then it is safe to assume that x = y

◮ Bitcoin :
◮ to identify transactions
◮ to make blocks resistant to tampering (modifying a single bit

changes the fingerprint)

14

Second-preimage resistance

Given an input x , it is difficult to find an input value x ′ 6= x such
that H(x ′) = H(x)

Generic Attack : probabilistic search

◮ Given x and its hashed value H(x) (n bits value)

◮ Randomly choose xi and compute zi = H(xi)

◮ Proba(zi = H(x)) = 1/2n

◮ Thus after having chosen 2n inputs one can find a pre-image
xi 6= x such that H(xi) = H(x)

15

File integrity

file1 H(file1) = 3214 5670 ab67 0123 8760

2123 34BF 0A23

(256 bits)

file2

Assume you have file 1

Is it possible to build another file, file 2, such that
both files have the same fingerprint?

16

Preimage resistance

Given z , find an input value x such that H(x) = z

Generic Attack : probabilistic search

◮ Given a hashed value z

◮ Randomly choose xi and compute zi = H(xi)

◮ Proba(zi = z) = 1/2n

◮ Thus after having chosen 2n inputs one can find a pre-image xi
such that H(xi) = z

17

Password storage

◮ In your machine, passwords are not stored. Only their hashed
values are stored

◮ When you want to authenticate, the login pg computes the
hashed value, which is compared with the one stored in
/etc/passwd

Property : Given the hashed value y it must be difficult to find x

such that H(x) = H(password) = y

18

Merkle-Damgard construction

19

1.2 Hash pointers

A hash pointer is the cryptographic hash value of the pointed
information

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

20

1.2 Hash pointers

Hash pointers allows the construction of a log data structure that
allows the detection of any manipulation

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

21

1.2 Hash pointers

Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

n'

22

1.2 Hash pointers

Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

n'

23

1.2 Hash pointers

Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

n'

✓ By only keeping the hash pointer of the head of the data
structure, we have a tamper-evident hash of a possibly very
long list

24

1.3 Hash tree : Merkle Tree

A Merkle tree 1 is a tree of hashes

◮ Leaves of the tree are data blocks

◮ Nodes are the hashes of their children

◮ Root of tree is the fingerprint of the tree

1. Merkle, R. C. (1988). "A Digital Signature Based on a Conventional
Encryption Function". Advances in Cryptology - CRYPTO ’87.

25

1.3 Hash tree : Merkle Tree

h000 = h(b0) h001 = h(b1)

h00 = h(h000 || h001)

h0 = h(h00 || h01)

b0 b1

h010 = h(b2) h011 = h(b3)

h01 = h(h010 || h011)

b2 b3

h100 = h(b4) h101 = h(b5)

h10 = h(h100 || h101)

h1 = h(h10 || h11)

b4 b5

h110 = h(b6)

h11 = h(h110 || h110)

b6

h = h(h0 || h1)

26

1.3 Hash tree : Merkle Tree

✓ Checking the integrity of the n data blocks of the tree
◮ easy due to collision resistance property of crypto. hash

functions

✓ Data blocks membership
◮ checked with log n pieces of information and in log n operations

27

1.3 Hash tree : Merkle Tree

h000 = h(b0) h001 = h(b1)

h00 = h(h000 || h001)

h0 = h(h00 || h01)

b0 b1

h010 = h(b2) h011 = h(b3)

h01 = h(h010 || h011)

b2 b3

h100 = h(b4) h101 = h(b5)

h10 = h(h100 || h101)

h1 = h(h10 || h11)

b4 b5

h110 = h(b6)

h11 = h(h110 || h110)

b6

h = h(h0 || h1)

28

1.4 Digital signature primitive

A digital signature is just like a signature on a document

◮ Only the creator of the document can sign, but anyone can
verify it

◮ Signature is tied to a particular document

How can we build such a digital signature ?

29

1.4 Digital signature

Three functions :

◮ (sk ,pk) := generateKeys(keysize)
◮ sk : private signing key
◮ pk : public verification key

◮ sig := sign(sk , H(message))

◮ ver := verify(pk , sig)

30

1.4 Digital signature

M

H(M)

H(M) = 01011011

SIG(H(M),s_k)
(M, sig)

= sig

Alice Bob

H(M)

VER(p_k,sig) = ver

if (ver = H(M)) then sig is valid

31

Using verification public key as an identity

Idea 2

◮ If you see (m,sig) such that the signature verifies under pk (i.e.
verify(pk , sig)= true) then one can see pk as a party saying
statements by signing them

2. D. Chaum, « Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonums », Communications of the ACM 24(2), pp :84–90,1981

32

No identities

1.4 BTC

◮ Alice and Bob want to transfer values

◮ But Alice does not want to use neither her identity nor Bob’s
one in the transaction

33

Using verification public key as identities

1.4 BTC1a56cf001345 0647a42bc021

◮ If you see a msg such that the signature verifies under pk (i.e.
verify(pk , msg, sig)= true) then on can see pk as a party
saying statements by signing them

◮ To speak on behalf of pk one must know sk

◮ So there is an identity in the system such that only a single
one can speak for it 3

3. D. Chaum, « Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonums », Communications of the ACM 24(2), pp :84–90,1981

34

Using Verification public key as identities

1.4 BTC1a56cf001345 0647a42bc021

0.5 BTC

34682ab20014

012af3840016

0.03 BTC

8901257abc56

59014abc5cf7

✓ By looking at public keys as identities you can generate as
many identities as you want !

✓ No central authority in charge of registering them !

35

Using verification public key as an identity

What about privacy ?

◮ no relationships between pk based identities and real identities

◮ by using the same pk (identity) an adversary can infer some
relationships based on the activity of pk

36

Using the « public key as identity » principle in

crypto-payment systems

◮ Most of the crypto-currencies use this principle to handle
accounts

◮ An account is a pair (pk , sk) and an amount of coins

37

First detour to Bitcoin : Transactions

◮ Transactions : state of the crypto-currency system

◮ data structure that allows Alice to transfer bitcoins to Bob and
Charly

◮ does not contain any confidential information
◮ verifiable by anyone → no trusted third-party !

38

Transaction : account

◮ An account is a « one shot object »

◮ an account is a <(private key,public key), amount of bitcoins>
◮ relies on the public key as identity principle
◮ debited once !
◮ each time you are the recipient of a transaction, it’s safer if

you create a new account (privacy reasons)

39

Transaction : structure

◮ Alice’s account
(input address)

◮ Bob’s and Charly’s
accounts (output
address)

◮ possibly some
change

◮ transactions fees

Input #1

Output ref. + script

Input #2

Output ref. + script

Transaction

Output #1

account + ฿

Output #2

account + ฿

40

Relying on past transactions to create new ones

Transaction 20ab3701i

Transaction 74201ab3c

UTXO

UTXO = Unspent Transaction Output

Output #2

account + ฿ + script

Output #1

account + ฿ + script

Output #1

account + ฿ + script

Output #1

account + ฿ + script

Input #1

Output ref. + script

Transaction 1206ac34e

Output #2

account + ฿ + script

Output #3

account + ฿ + script

Output #1

account + ฿ + script
Input #1

Output ref. + script

Input #2

Output ref. + script

Input #1

Output ref. + script

Input #2

Output ref. + script

Do not forget Tx fees, i.e., ฿ input > ฿ output

UTXO

41

Transaction : script

◮ Bitcoin relies on a (limited) script language
◮ to lock an output, the script provides a challenge

◮ i.e., fingerprint of the recipient public key, H(pk)
◮ to unlock an input, the script provides the solution of the

challenge
◮ i.e., public key pk together with sk ’s signature

Transaction 20ab3701i

Transaction 74201ab3c

UTXO

UTXO = Unspent Transaction Output

Output #2

account + ฿ + script

Output #1

account + ฿ + script

Output #1

account + ฿ + script

Output #1

account + ฿ + script

Input #1

Output ref. + script

Transaction 1206ac34e

Output #2

account + ฿ + script

Output #3

account + ฿ + script

Output #1

account + ฿ + script
Input #1

Output ref. + script

Input #2

Output ref. + script

Input #1

Output ref. + script

Input #2

Output ref. + script

Do not forget Tx fees, i.e., ฿ input > ฿ output

UTXO

42

Script language

43

Script language

44

Script language

Input ----

Output

 OP_DUP OP_HASH160 <pubKeyHash>

 OP_EQUALVERIFY OP_CHECKSIG

Transaction T

Input

 <sig> <pubKey>

Output ----

Transaction T'

<sig>

OP_DUP OP_HASH<pubKey>

<sig>

<pubKey>

<pubKey>

<sig>

<pubKey>

<pubKey>

pubHashA>

OP_EQUALVERIFY

<sig>

<pubKey>

OP_CHECKSIG

if true empty

45

Which Abstractions ?

c
Crypto

primitives

Hash function

Digital signature

Merkle tree

c
Broadcast

primitive

Dissemination of

information in the

open Bicoin network

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001

Chunk -> Sara ฿0.05

Eva -> Alice ฿0.009

Alice -> John ฿0.02

Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008

Bob -> Alice ฿0.05

Bob -> Alice ฿0.046

Bob -> Alice ฿0.008

Ledger

46

Abstraction 2 : Communication primitive

◮ Size : set of thousands or millions of nodes N

◮ Dynamic : nodes can join and leave the system at will

◮ Randomness is fundamental

◮ Any individual in the system should have the same probability
to be chosen as a neighbor of any other individual

47

Bitcoin Network

◮ Peer-to-peer networkd

◮ Topology formed through a randomized process

◮ No coordinating entity

◮ Broadcast is based on flooding/gossiping neighbors’ link

Tx d	->	e

Tx a	->	B

Tx a	->	B Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx d	->	e

Tx d	->	e

Tx d	->	e

Tx d	->	e

Tx d	->	e

Tx a	->	B

Tx d	->	e

Tx d	->	e

Tx a	->	B

Tx a	->	B

Tx d	->	e

4. Gnutella (2000), GIA (2003), Cyclon (2005)

48

Abstraction 2 : properties

1. Fully decentralized

2. Uniformity

3. Low latency 4

msg. transmission time

block time interval
≪ 1

✓ Allows to keep the probability of fork small (i.e. 10−3)

✓ PoW mechanism allows this ratio to continuously hold

4. J. Garay and A. Kiayias, The Bitcoin Backbone Protocol : Analysis and
Application, Eurocrypt 2015

49

Which Abstractions ?

c
Crypto

primitives

Hash function

Digital signature

Merkle tree

c
Broadcast

primitive

Dissemination of

information in the

open Bicoin network

cAgreement

Persistent ordering of

all the transactions

ever created with no

trusted party

50

Abstraction 3 : Agreement on the content of the ledger

A publicly, immutable, and ordered log of transactions

b
1

b
2

b
3 b

4
b
0

b
0

b
1

b
2

b
3 b

4

51

Block of transactions

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

52

Blocks of transactions

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Transaction 653278

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Transaction 232356

53

Resistant to attacks

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Transaction 653278

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Transaction 232356

54

Resistant to attacks

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Transaction 653278

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Transaction 232356

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

55

A chain of blocks : the blockchain

A publicly, immutable, and totally ordered log of transactions

◮ Why digital signatures are not sufficient ?

◮ How can we securely link blocks ?

◮ How can we prevent transactions in a block from being
manipulated ?

◮ Who is allowed to create blocks ?

◮ Who is in charge of checking that blocks are correctly
created ?

56

A chain of blocks : the blockchain

A publicly, immutable, and totally ordered log of transactions

◮ Why digital signatures are not sufficient ?

✗ do not prevent double-spending attacks

◮ How can we securely link blocks ?

◮ How can we prevent transactions in a block from being
manipulated ?

◮ Who is allowed to create blocks ?

◮ Who is in charge of checking that blocks are correctly
created ?

57

A chain of blocks : the blockchain

A publicly, immutable, and totally ordered log of transactions

◮ Why digital signatures are not sufficient ?

✗ do not prevent double-spending attacks

◮ How can we securely link blocks ?

✓ by linking them with cryptographic fingerprints

◮ How can we prevent transactions in a block from being
manipulated ?

◮ Who is allowed to create blocks ?

◮ Who is in charge of checking that blocks are correctly
created ?

58

A chain of blocks : the blockchain

A publicly, immutable, and totally ordered log of transactions

◮ Why digital signatures are not sufficient ?

✓ do not prevent double-spending attacks

◮ How can we securely link blocks ?

✓ by linking them with cryptographic fingerprints

◮ How can we prevent transactions in a block from being
manipulated ?

✓ efficient cryptographic fingerprint of the transactions

◮ Who is allowed to create blocks ?

◮ Who is in charge of checking that blocks are correctly
created ?

59

A chain of blocks : the blockchain

A publicly, immutable, and totally ordered log of transactions

◮ Why digital signatures are not sufficient ?

✗ do not prevent double-spending attacks

◮ How can we securely link blocks ?

✓ by linking them with cryptographic fingerprints

◮ How can we prevent transactions in a block from being
manipulated ?

✓ efficient cryptographic fingerprint of the transactions

◮ Who is allowed to create blocks ?

✓ any node in the network capable of solving a given challenge

◮ Who is in charge of checking that blocks are correctly
created ?

60

A chain of blocks : the blockchain

A publicly, immutable, and totally ordered log of transactions

◮ Why digital signatures are not sufficient ?

✗ do not prevent double-spending attacks

◮ How can we securely link blocks ?

✓ by linking them with cryptographic fingerprints

◮ How can we prevent transactions in a block from being
manipulated ?

✓ efficient cryptographic fingerprint of the transactions

◮ Who is allowed to create blocks ?

✓ any node in the network capable of solving a given challenge

◮ Who is in charge of checking that blocks are correctly
created ?

✓ everyone ! !

61

How can we securely link blocks ?

Cryptographic Hash functions

◮ allows you to compute a fixed-size fingerprint from any type of
data

◮ deterministic function
◮ efficiently computable
◮ practically impossible to invert (« one-way function »)

H(block n-6) H(block n-5) H(block n-4) H(block n-3) H(block n-2) H(block n-1)

block n-6 block n-5 block n-4 block n-3 block n-2 block n-1 block n

H(block n-7)

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Transaction 653278

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Transaction 232356

Transaction 652a11

Transaction 432312

Transaction 733566

Transaction 22f432

.

.

.

Transaction 672356

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Transaction 232356

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Transaction 653278

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

62

How can we prevent transactions of a block from being

manipulated ?

Merkle tree

A Merkle tree 5 is a tree

◮ Leaves of the tree are data blocks
◮ Nodes are the cryptographic hashes of their children
◮ Root of tree is the fingerprint of the tree

H(block n-6)

Merkle root

H(block n-5)

Merkle root

H(block n-4

Merkle root

H(block n-3

Merkle root

H(block n-2

Merkle root

H(block n-1)

Merkle root

block n-6 block n-5 block n-4 block n-3 block n-2 block n-1 block n

H(block n-7)

Merkle root

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Transaction 653278

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Transaction 232356

Transaction 652a11

Transaction 432312

Transaction 733566

Transaction 22f432

.

.

.

Transaction 672356

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Transaction 232356

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Transaction 653278

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Transaction 321456

63

Nakamoto Consensus protocol : Adversary model 6

The Computational Threshold Adversary (CTA) model

◮ The adversary controls a minority of the total amount of
computational power

◮ The CTA model is also called the permissionless model
◮ There is no membership protocol
◮ Incorporates some degree of synchrony

The Stake Threshold Adversary (STA) model

◮ The adversary controls a minority stake in some limited
resource, i.e., the crypto-currency

◮ May allow to punish malicious parties via some stake deposit

6. Ittai Abraham and Dahlia Malkhi, « The blockchain consensus layer and
BFT », The distributed Computing Column, 2017

64

Nakamoto Consensus protocol

The goal of the Consensus Nakamoto protocol is to implement a
blockchain replication protocol 7

◮ (Uniqueness) There is a unique chain of blocks (i.e., the
blockchain)

◮ (Liveness) The blockchain is constantly growing

◮ (Safety) The deeper a block is buried in the blockchain the
harder it is to abort it

◮ (Fairness) The proportion of blocks of non-faulty parties in the
blockchain is proportional to their computation power

7. J. Garay and A. Kiayias, The Bitcoin Backbone Protocol : Analysis and
Application, Eurocrypt 2015

65

Nakamoto Consensus protocol

Two ingredients : Leader Election Oracle + Heavier Fork Strategy

1 A leader election oracle implemented by the PoW mechanism
◮ Each party is elected independently
◮ The probability of electing each party is proportional to its

relative computational power

→ Synchronize the creation of blocks

→ Prevent Sybil attacks

→ Incentivize correct behavior through currency creation

66

Nakamoto Consensus protocol

Two ingredients : Leader Election Oracle + Heavier Fork Strategy

2 The simple and local Heavier Fork Strategy
◮ Select the chain which required the greatest among of work
◮ Random nature of the PoW + Non-faulty leaders always use

the chain which required the greatest among of work

→ One chain will be extended more than the others

→ This is the blockchain !

b1 b2 b3

b3

b0b0 b1 b2

b3

b3
’

b1 b2 b3

b3

b0b0 b1 b2

b3

b3
’

b4b4 b5b5

67

Blockchain Proof-of-Work

68

Blockchain Proof-of-Work

◮ Comes down to compute a hash partial inversion
◮ find pre-image for a partially specified hash function output

69

Each party tries to provide a pow, and the proba p that one try is
successful is

p = D/2κ,

with {0, 1}κ the range of H(.), and D the difficulty.

70

Proof-of-Work

string=HelloWorld !, nonce=0, difficulty=000

71

Proof-of-Work

string=HelloWorld !, nonce=0, difficulty=000 ✶

HelloWorld!0:3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a

72

Proof-of-Work

string=HelloWorld !, nonce=1, difficulty=000 ✹

HelloWorld!0:3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a

HelloWorld!1:b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27

73

Proof-of-Work

string=HelloWorld !, nonce=2, difficulty=000 ✷

HelloWorld!0:3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a

HelloWorld!1:b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27

HelloWorld!2:5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320

74

Proof-of-Work

string=HelloWorld !, nonce=3, difficulty=000 ✸

HelloWorld!0:3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a

HelloWorld!1:b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27

HelloWorld!2:5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320

HelloWorld!3:9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78

....

75

Proof-of-Work

string=HelloWorld !, nonce=94, difficulty=000 ✺

HelloWorld!0:3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a

HelloWorld!1:b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27

HelloWorld!2:5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320

HelloWorld!3:9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78

....

HelloWorld!94:7090a0e5d88cff635e42ea33fcd6091a058e9cdd58ab8cd5c21c1c70421e35c6

76

Proof-of-Work

string=HelloWorld !, nonce=95, difficulty=000 ✷

HelloWorld!0:3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a

HelloWorld!1:b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27

HelloWorld!2:5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320

HelloWorld!3:9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78

....

HelloWorld!94:7090a0e5d88cff635e42ea33fcd6091a058e9cdd58ab8cd5c21c1c70421e35c6

HelloWorld!95:b74f3b2cf1061895f880a99d1d0249a8cedf223d3ed061150548aa6212c88d43

HelloWorld!96:447ca2fa886965af084808d22116edde4383cbaa16fd1fbcf3db61421b9990b9

77

Proof-of-Work

string=HelloWorld !, nonce=97, difficulty=000, ✻

HelloWorld!0:3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a

HelloWorld!1:b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27

HelloWorld!2:5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320

HelloWorld!3:9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78

....

HelloWorld!94:7090a0e5d88cff635e42ea33fcd6091a058e9cdd58ab8cd5c21c1c70421e35c6

HelloWorld!95:b74f3b2cf1061895f880a99d1d0249a8cedf223d3ed061150548aa6212c88d43

HelloWorld!96:447ca2fa886965af084808d22116edde4383cbaa16fd1fbcf3db61421b9990b9

HelloWorld!97:000ba61ca46d1d317684925a0ef070e30193ff5fa6124aff76f513d96f49349d

78

Blockchain Proof-of-Work

Properties

◮ Algorithmically computable
◮ Difficult to solve but quickly verified
◮ Difficulty proportional to computation power

◮ average generation time : 10 minutes
◮ proba that one try is successful is proportional to the difficulty

and the range of H(.)
◮ Memoryless process

H(block n-6)

Merkle root

Nounce

H(block n-5)

Merkle root

Nounce

H(block n-4)

Merkle root

Nounce

H(block n-3)

Merkle root

Nounce

H(block n-2)

Merkle root

Nounce

H(block n-1)

Merkle root

Nounce

block n-6 block n-5 block n-4 block n-3 block n-2 block n-1 block n

H(block n-7)

Merkle root

Nounce

Coinbase transac.

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

Coinbase transac.

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Coinbase transac.

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Coinbase transac.

Transaction 652a11

Transaction 432312

Transaction 733566

Transaction 22f432

.

.

.

Coinbase transac.

Transaction 336789

Transaction 7245ab

Transaction 635566

Transaction 12f4a22

.

.

.

Coinbase transac.

Transaction 437621

Transaction 8593ab

Transaction 12367b

Transaction 793154

.

.

.

Coinbase transac.

Transaction 945846

Transaction 58801a

Transaction 665389

Transaction 7654ab

.

.

.

79

Blockchain construction

✶ ✶ ✶ ✶ ✶ ✶ ✶

A B C D E F G

(B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥)

79

Blockchain construction

✷ ✺ ✸ ✸ ✹ ✶ ✷

A B C D E F G

(B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥)

79

Blockchain construction

✶ ✻

Block !

✸ ✹ ✺ ✶ ✸

A B C D E F G

(B0,⊥) (B0,⊥)

(B1,B)

(B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥)

79

Blockchain construction

✺ ✶ ✸ ✺ ✶ ✹ ✸

A B C D E F G

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

79

Blockchain construction

✺ ✹ ✷ ✸ ✷ ✶ ✶

A B C D E F G

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

79

Conflict : Transient inconsistencies

✻ ✸ ✺ ✺ ✹ ✻ ✺

Block ! Block !
A B C D E F G

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B6,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′

6
,F)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

80

Blockchain fork

BLOCK n-2BLOCK n-3 BLOCK n-1 BLOCK n BLOCK n+1 BLOCK n+2

BLOCK n+1

Nakamoto conflict chain rule

Mine on the longest branch !

◮ Proba. that a block is removed from the blockchain decreases
exponentially with the number k of blocks appended to it.

◮ k = confirmation level

◮ When k ≥ 6, this proba is very small

80

Conflict : Transient inconsistencies

✶ ✸ ✻ ✺ ✹ ✷ ✻

Block ! Block !
A B C D E F G

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B6,A)

(B7,G)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′

6
,F)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′

6
,F)

(B ′

7
,C)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′

6
,F)

(B ′

7
,C)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B6,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′

6
,F)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B6,A)

(B7,G)

80

Conflict : Transient inconsistencies

✻ ✸ ✷ ✺ ✹ ✷ ✹

Block !
A B C D E F G

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B8,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B8,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B8,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B8,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

81

Abstraction 4 : Minting money to incentivize correct

behavior

BLOCK n

Previous block n-1

Merkle tree (root)

Proof of work

Transactions

T0

T1

...

BLOCK n-1BLOCK n-2

Coinbase transaction

12.5 + transactions

fees

◮ Nodes are working (racing) to solve the computational puzzle

◮ This is in exchange for monetary rewards
◮ Coinbase transaction = 12.5 bitcoins + transaction fees
◮ Started at 50 bitcoins and is halved every 210, 000 blocks

◮ This incentivizes miners to only work on valid blocks
◮ « valid block » : for miners, this means blocks for which the

majority will accept to build upon

82

Summary

◮ The bitcoin system relies on a smart combination of
abstractions to build a payment system and a crypto-currency

◮ in a completely distributed system (i.e., no trusted third party)
◮ large-scale and open to everyone
◮ incentive to honestly behave (through financial awards)

◮ Performance issues : several transactions per second

◮ Environmental issues : proof-of-work

83

Electing a leader in a permissionless setting

◮ Proof-of-work

✓ Works in practice and this is true since 2009
✓ Security analysis
✗ Environmental issues
✗ Diminishing returns
✗ Distinction between miners and crypto-currency holders (i.e.,

miners control what is inside blocks)

◮ Proof-of-work with useful computation, proof-of-space,
proof-of-storage, . . .

✗ Physical resources

◮ Proof-of-stake

✓ Abstract but limited resource : coin itself 8

✓ All the required information is already in the blockchain
✗ Numerous attacks

8. A. Durand, E. Anceaume, R. Ludinard, « StakeCube : Combining sharding
and proof-of-stake to build fork-free secure permissionless distributed ledgers »,
Int’l Conference on Networked Systems, 2019

84

Self-Adapting to the actual number of transactions

1. A ledger with several parallel (but not conflicting) chains

2. Valid (and not conflicting) blocks should be mined in parallel

New	blocks

New	block

B0

Bitcoin’s	blockchain

B0

85

Self-Adapting to the actual number of transactions

1. A ledger with several parallel (but not conflicting) chains

2. Valid (and not conflicting) blocks should be mined in parallel
3. Miners should not be able to predict the chain of the ledger to

which their blocks will be appended
◮ Cannot devote their computational power to a specific chain

New	blocks

New	block

B0

Bitcoin’s	blockchain

B0

86

Self-Adapting to the actual number of transactions

1. A ledger with several parallel (but not conflicting) chains
2. Valid (and not conflicting) blocks should be mined in parallel
3. Miners should not be able to predict the chain of the ledger to

which their blocks will be appended
4. Overloaded chains should dynamically split and underloaded

ones should dynamically merge

87

o All these features should be verifiable by anyone at any time 9

9. E. Anceaume, A. Guellier, R. Ludinard, B. Sericola, Sycomore : a
Permissionless Distributed Ledger that self-adapts to Transactions Demand,
IEEE NCA, 2018

88

Permissionless and others

Other ways of building distributed ledgers

◮ Consortium blockchains
◮ Assume a well-known set of entities capable of the read, write,

and execute operations
◮ Do not necessarily require to solve a challenge to write a new

block
◮ Rely on Byzantine agreement algorithms

◮ Private blockchains
◮ Assume the presence of a trusted third party in charge of the

read, write, and execute operations 10

◮ Do not need to solve a challenge to write a new block
◮ Do not need Byzantine agreement algorithms

10. Haber and Stornetta, How to timestamp a digital document, J. of
cryptology, 3(2), pp 99–111, 1991

Thank you for your attention

Any questions ?

89

90

