
A Model Checking Case Study
Flooding Time Synchronization Protocol

Ocan Sankur

Univ Rennes, CNRS, Inria

Ocan Sankur Model Checking of Distributed Protocols 1 / 30

Formal Methods

Development cycle for general-purpose systems
1 Write code
2 Code review, testing
3 Deploy
4 Fix bugs, and provide regular updates

Is step 4 feasible for all systems?

Ocan Sankur Model Checking of Distributed Protocols 2 / 30

Formal Methods

Development cycle for general-purpose systems
1 Write code
2 Code review, testing
3 Deploy
4 Fix bugs, and provide regular updates

Is step 4 feasible for all systems?

Ocan Sankur Model Checking of Distributed Protocols 2 / 30

Formal Methods

Development cycle for general-purpose systems
1 Write code
2 Code review, testing
3 Deploy
4 Fix bugs, and provide regular updates

Is step 4 feasible for all systems?
Aerospatial:

Ocan Sankur Model Checking of Distributed Protocols 2 / 30

Formal Methods

Development cycle for general-purpose systems
1 Write code
2 Code review, testing
3 Deploy
4 Fix bugs, and provide regular updates

Is step 4 feasible for all systems?
Health:

Ocan Sankur Model Checking of Distributed Protocols 2 / 30

Formal Methods

Development cycle for general-purpose systems
1 Write code
2 Code review, testing
3 Deploy
4 Fix bugs, and provide regular updates

Is step 4 feasible for all systems?
Transportation (train networks, autonomous vehicles, airplanes)

Ocan Sankur Model Checking of Distributed Protocols 2 / 30

Mars Rover

Developed in 3 years, for about 150 million dollars
The rover landed successfully in Mars but had several total system
resets
Loss of mission time
Engineers were able to fix the bug by an update!

Ocan Sankur Model Checking of Distributed Protocols 3 / 30

Ariane 5

An Ariane rocket launched in 1996 has exploded shortly after the
launch
Previous missions were successful
370 million euros

Other famous bugs: Hardware bugs, Toyota unintended acceleration
bug(?), infusion pumps, train systems

Ocan Sankur Model Checking of Distributed Protocols 4 / 30

Ariane 5

An Ariane rocket launched in 1996 has exploded shortly after the
launch
Previous missions were successful
370 million euros

Other famous bugs: Hardware bugs, Toyota unintended acceleration
bug(?), infusion pumps, train systems

Ocan Sankur Model Checking of Distributed Protocols 4 / 30

Formal Verification

Formal verification
Input: System or a model
Output: Check whether all possible behaviors are correct

∼ Exhaustive testing

System

Specification

Formal
Verification Deployment

Ocan Sankur Model Checking of Distributed Protocols 5 / 30

Application Domains

Hardware industry
Embedded systems
Communication systems
Transportation (Automative, aerospatial, trains)

Critical areas such as aerospatial industry require certification:
A rigorous development methodology including formal verification must be
followed

More and more used in non-critical software development!

Ocan Sankur Model Checking of Distributed Protocols 6 / 30

Application Domains

Hardware industry
Embedded systems
Communication systems
Transportation (Automative, aerospatial, trains)

Critical areas such as aerospatial industry require certification:
A rigorous development methodology including formal verification must be
followed

More and more used in non-critical software development!

Ocan Sankur Model Checking of Distributed Protocols 6 / 30

Model Checking

Model-checking

|=? is reachable

The model is often a transition system: graph of configurations
Goal: Check the specification on all paths in this graph

Ocan Sankur Model Checking of Distributed Protocols 7 / 30

Model Checking

Model-checking

|=? is reachable

The model is often a transition system: graph of configurations
Goal: Check the specification on all paths in this graph

Ocan Sankur Model Checking of Distributed Protocols 7 / 30

Model Checking

Theoretical Definition
Given a transition system T , and specification φ, check whether the
executions of T satisfy φ.

When T is an automaton, and φ safety condition, model checking is a
simple graph traversal.

However, in practice, state-space explosion due to
Use of Boolean or discrete variables (think of a 64-bit integer variable)
Parallel composition of components
Time constraints, ...

Ocan Sankur Model Checking of Distributed Protocols 8 / 30

Model Checking

Theoretical Definition
Given a transition system T , and specification φ, check whether the
executions of T satisfy φ.

When T is an automaton, and φ safety condition, model checking is a
simple graph traversal.

However, in practice, state-space explosion due to
Use of Boolean or discrete variables (think of a 64-bit integer variable)
Parallel composition of components
Time constraints, ...

Ocan Sankur Model Checking of Distributed Protocols 8 / 30

Model Checking - 2

Model checking is about controlling the state space explosion.
Each algorithm and application must justify how this is handled. E.g.

Choice of an efficient state-space representation
Reduction of the state space: abstractions
. . .

Ocan Sankur Model Checking of Distributed Protocols 9 / 30

Case Study: Clock Synchronization Protocol

Clocks on all electronics are not identical and sensitive to
temperature
Algorithms are used to synchronize clocks over networks

I This makes sure machines agree on a common time: collaborative
platforms, social networks, wireless sensor networks

Ocan Sankur Model Checking of Distributed Protocols 10 / 30

Case Study: Clock Synchronization Protocol

Clocks on all electronics are not identical and sensitive to
temperature
Algorithms are used to synchronize clocks over networks

I This makes sure machines agree on a common time: collaborative
platforms, social networks, wireless sensor networks

Ocan Sankur Model Checking of Distributed Protocols 10 / 30

Parameterized Model Checking

Goal: Model check a given protocol on all possible network topologies

For all number of participants, and all topologies, check all executions

Ocan Sankur Model Checking of Distributed Protocols 11 / 30

Parameterized Model Checking

Goal: Model check a given protocol on all possible network topologies

For all number of participants, and all topologies, check all executions

Ocan Sankur Model Checking of Distributed Protocols 11 / 30

Flooding-Time Synchronization Protocol (FTSP)

Leader Election
From all possible configurations a unique leader machine is eventually
elected

FTSP
Maintains a unique leader, recovers in case of link/node failures
Smoothly synchronizes the clocks over the network with the clock of
the leader

We consider the leader election part of FTSP: Verify that a unique leader
is eventually elected

Ocan Sankur Model Checking of Distributed Protocols 12 / 30

Flooding-Time Synchronization Protocol (FTSP)

– Nodes have unique identifiers but execute the same program
– Each node wakes up with period P and sends a message to its neighbors
– The network eventually elects the node with the least ID as the leader
– Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

Initially

1 2

3

Leader=?
Leader=?

Leader=?

Message content: (leader ID `, sequence number s)
Process ignores message if its leader is < ` or if its leader is ` but has
already seen a message with s ′ ≥ s.

Ocan Sankur Model Checking of Distributed Protocols 13 / 30

Flooding-Time Synchronization Protocol (FTSP)

– Nodes have unique identifiers but execute the same program
– Each node wakes up with period P and sends a message to its neighbors
– The network eventually elects the node with the least ID as the leader
– Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

Timeout

1 2

3

Leader=1
Leader=2

Leader=3

Message content: (leader ID `, sequence number s)
Process ignores message if its leader is < ` or if its leader is ` but has
already seen a message with s ′ ≥ s.

Ocan Sankur Model Checking of Distributed Protocols 13 / 30

Flooding-Time Synchronization Protocol (FTSP)

– Nodes have unique identifiers but execute the same program
– Each node wakes up with period P and sends a message to its neighbors
– The network eventually elects the node with the least ID as the leader
– Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

2 communicates with 3

1 2

3

Leader=1
Leader=2

Leader=2

Message content: (leader ID `, sequence number s)
Process ignores message if its leader is < ` or if its leader is ` but has
already seen a message with s ′ ≥ s.

Ocan Sankur Model Checking of Distributed Protocols 13 / 30

Flooding-Time Synchronization Protocol (FTSP)

– Nodes have unique identifiers but execute the same program
– Each node wakes up with period P and sends a message to its neighbors
– The network eventually elects the node with the least ID as the leader
– Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

1 communicates with 3

1 2

3

Leader=1
Leader=2

Leader=1

Message content: (leader ID `, sequence number s)
Process ignores message if its leader is < ` or if its leader is ` but has
already seen a message with s ′ ≥ s.

Ocan Sankur Model Checking of Distributed Protocols 13 / 30

Flooding-Time Synchronization Protocol (FTSP)

– Nodes have unique identifiers but execute the same program
– Each node wakes up with period P and sends a message to its neighbors
– The network eventually elects the node with the least ID as the leader
– Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

2 communicates with 3: Ignored!

1 2

3

Leader=1
Leader=2

Leader=1

Message content: (leader ID `, sequence number s)
Process ignores message if its leader is < ` or if its leader is ` but has
already seen a message with s ′ ≥ s.

Ocan Sankur Model Checking of Distributed Protocols 13 / 30

Flooding-Time Synchronization Protocol (FTSP)

– Nodes have unique identifiers but execute the same program
– Each node wakes up with period P and sends a message to its neighbors
– The network eventually elects the node with the least ID as the leader
– Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

3 communicates with 2: Convergence!

1 2

3

Leader=1
Leader=1

Leader=1

Message content: (leader ID `, sequence number s)
Process ignores message if its leader is < ` or if its leader is ` but has
already seen a message with s ′ ≥ s.

Ocan Sankur Model Checking of Distributed Protocols 13 / 30

Flooding-Time Synchronization Protocol (FTSP)

– Nodes have unique identifiers but execute the same program
– Each node wakes up with period P and sends a message to its neighbors
– The network eventually elects the node with the least ID as the leader
– Fault tolerant: any node that hasn’t heard from the leader for a while
timeouts and declares itself leader

1 2

3

Leader=1
Leader=1

Leader=1

Message content: (leader ID `, sequence number s)
Process ignores message if its leader is < ` or if its leader is ` but has
already seen a message with s ′ ≥ s.

Ocan Sankur Model Checking of Distributed Protocols 13 / 30

Simplified code

Our model: Derived from the TinyOS implementation
Omitted here but available in the model: sample threshold, ignore period

Ocan Sankur Model Checking of Distributed Protocols 14 / 30

Previous Verification Results

Previous work: Model checking that a unique leader is eventually elected
(Spin, FDR3, Uppaal).

A few fixed topologies. The largest verified topology (in 1 hour):

Perfectly synchronized clocks, no clock deviations!
Synchronous message broadcast: when a process sends a message, all
other nodes stop and listen

Kusy, Abdelwahed 2006, McInnes 2009, Tan, Zhao, Wang 2010

Present work
Arbitrary network topology within given diameter K
(we will go up to K = 13)
Deviating clocks
Synchronous or asynchronous broadcast

Ocan Sankur Model Checking of Distributed Protocols 15 / 30

Previous Verification Results

Previous work: Model checking that a unique leader is eventually elected
(Spin, FDR3, Uppaal).

A few fixed topologies. The largest verified topology (in 1 hour):

Perfectly synchronized clocks, no clock deviations!
Synchronous message broadcast: when a process sends a message, all
other nodes stop and listen

Kusy, Abdelwahed 2006, McInnes 2009, Tan, Zhao, Wang 2010

Present work
Arbitrary network topology within given diameter K
(we will go up to K = 13)
Deviating clocks
Synchronous or asynchronous broadcast

Ocan Sankur Model Checking of Distributed Protocols 15 / 30

Overview of the Talk
1 FTSP
2 Previous model checking attempts
3 Abstraction Idea 1: Anonymization
4 Abstraction Idea 2: Network abstraction
5 Clock Deviations
6 Results
7 Incremental Proof and Custom Semi-Algorithm
8 Abstraction Refinement

Ocan Sankur Model Checking of Distributed Protocols 16 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

How the leader is propagated:

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

Abstracting the network:

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

Abstracting the network:

Pick a shortest path from the future leader to some node

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

Abstracting the network:

v

On the right, the gray node can send any message (`, s) to anyone, as long
as ` is different than the IDs of the red processes.

If the least ID is 1, we check the following property in the small model:

♦�(P1.myleader = 1 & P2.myleader = 1 & P3.myleader = 1).

This would imply that the property holds on the left for this particular
topology

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

Abstracting the network:

v

On the right, the gray node can send any message (`, s) to anyone, as long
as ` is different than the IDs of the red processes.

If the least ID is 1, we check the following property in the small model:

♦�(P1.myleader = 1 & P2.myleader = 1 & P3.myleader = 1).

Generalization: We want the abstract model to be the same for all
possible choices of the red paths of given length D

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

Main Abstraction Idea for Parameterized Verification

1 3 2 v

1 3 2

On the right, the gray node can send any message (`, s) to anyone, as long
as ` is different than the IDs of the red processes.

If the least ID is 1, we check the following property in the small model:

♦�(P1.myleader = 1 & P2.myleader = 1 & P3.myleader = 1).

Problem: The verification result is valid for a given path and a given
configuration of the identifiers

Ocan Sankur Model Checking of Distributed Protocols 17 / 30

1. Anonymization through data abstraction

Goal: Map “unbounded” variables to finite domains
Let FLEAD denote the identifier of the future leader.
Let NONFLEAD be a symbol to represent any other id.

Node Identifiers
Map all identifier variables i.e. myleader and li to {FLEAD, NONFLEAD}.
Some expressions and assignments become non-deterministic:
→ Expression “li < myleader” becomes:

li = FLEAD ∧ myleader = NONFLEAD : true
li = NONFLEAD ∧ myleader = FLEAD : false
li = myleader = FLEAD : false
otherwise :{true,false}.

(We also map integer variables to finite domains)

The abstract protocol is an over-approximation
The protocol does not depend on precise identifiers but only on FLEAD

Ocan Sankur Model Checking of Distributed Protocols 18 / 30

1. Anonymization through data abstraction

Goal: Map “unbounded” variables to finite domains
Let FLEAD denote the identifier of the future leader.
Let NONFLEAD be a symbol to represent any other id.

Node Identifiers
Map all identifier variables i.e. myleader and li to {FLEAD, NONFLEAD}.
Some expressions and assignments become non-deterministic:
→ Expression “li < myleader” becomes:

li = FLEAD ∧ myleader = NONFLEAD : true
li = NONFLEAD ∧ myleader = FLEAD : false
li = myleader = FLEAD : false
otherwise :{true,false}.

(We also map integer variables to finite domains)
The abstract protocol is an over-approximation

The protocol does not depend on precise identifiers but only on FLEAD

Ocan Sankur Model Checking of Distributed Protocols 18 / 30

1. Anonymization through data abstraction

Goal: Map “unbounded” variables to finite domains
Let FLEAD denote the identifier of the future leader.
Let NONFLEAD be a symbol to represent any other id.

Node Identifiers
Map all identifier variables i.e. myleader and li to {FLEAD, NONFLEAD}.
Some expressions and assignments become non-deterministic:
→ Expression “li < myleader” becomes:

li = FLEAD ∧ myleader = NONFLEAD : true
li = NONFLEAD ∧ myleader = FLEAD : false
li = myleader = FLEAD : false
otherwise :{true,false}.

(We also map integer variables to finite domains)
The abstract protocol is an over-approximation
The protocol does not depend on precise identifiers but only on FLEAD

Ocan Sankur Model Checking of Distributed Protocols 18 / 30

Back to Shortest-Path Abstraction

1 3 2 v FL NFL NFL

The abstraction is identical:
For any configuration of the identifiers
For any chosen path

Fix parameter D as the max. distance from the future leader.

Abstract model AD over-approximates the nodes within distance of D
from future leader in all networks

Then, AD |= φ means φ holds at all nodes at distance ≤ D.

Main idea but needs several other tricks to work

Ocan Sankur Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

1 2 3 v FL NFL NFL

The abstraction is identical:
For any configuration of the identifiers

For any chosen path
Fix parameter D as the max. distance from the future leader.

Abstract model AD over-approximates the nodes within distance of D
from future leader in all networks

Then, AD |= φ means φ holds at all nodes at distance ≤ D.

Main idea but needs several other tricks to work

Ocan Sankur Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

1

2 3

v FL NFL NFL

The abstraction is identical:
For any configuration of the identifiers

For any chosen path
Fix parameter D as the max. distance from the future leader.

Abstract model AD over-approximates the nodes within distance of D
from future leader in all networks

Then, AD |= φ means φ holds at all nodes at distance ≤ D.

Main idea but needs several other tricks to work

Ocan Sankur Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

1

2 3

v FL NFL NFL

The abstraction is identical:
For any configuration of the identifiers
For any chosen path

Fix parameter D as the max. distance from the future leader.

Abstract model AD over-approximates the nodes within distance of D
from future leader in all networks

Then, AD |= φ means φ holds at all nodes at distance ≤ D.

Main idea but needs several other tricks to work

Ocan Sankur Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

3 2

1

v FL NFL NFL

The abstraction is identical:
For any configuration of the identifiers
For any chosen path

Fix parameter D as the max. distance from the future leader.

Abstract model AD over-approximates the nodes within distance of D
from future leader in all networks

Then, AD |= φ means φ holds at all nodes at distance ≤ D.

Main idea but needs several other tricks to work

Ocan Sankur Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

3 2

1

v FL NFL NFL

The abstraction is identical:
For any configuration of the identifiers
For any chosen path in any graph

Fix parameter D as the max. distance from the future leader.

Abstract model AD over-approximates the nodes within distance of D
from future leader in all networks

Then, AD |= φ means φ holds at all nodes at distance ≤ D.

Main idea but needs several other tricks to work

Ocan Sankur Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

3 2

1

v FL NFL NFL

The abstraction is identical:
For any configuration of the identifiers
For any chosen path in any graph

Fix parameter D as the max. distance from the future leader.

Abstract model AD over-approximates the nodes within distance of D
from future leader in all networks

Then, AD |= φ means φ holds at all nodes at distance ≤ D.

Main idea but needs several other tricks to work

Ocan Sankur Model Checking of Distributed Protocols 19 / 30

Back to Shortest-Path Abstraction

3 2

1

v FL NFL NFL

The abstraction is identical:
For any configuration of the identifiers
For any chosen path in any graph

Fix parameter D as the max. distance from the future leader.

Abstract model AD over-approximates the nodes within distance of D
from future leader in all networks

Then, AD |= φ means φ holds at all nodes at distance ≤ D.

Main idea but needs several other tricks to work

Ocan Sankur Model Checking of Distributed Protocols 19 / 30

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler

– Each process is activated with “identical” period P ± ε

– Not synchronous, not completely asynchronous neither

Approximate Synchrony (Caspi 2000, Desai et al. CAV2015)
Fix parameter ∆. Let Ni (t) denote the number of times process i has
been activated at time t.

Scheduler: Allow all interleavings between processes so that
|Ni (t)− Nj(t)| ≤ ∆ for all i , j , t.

Given P, ε, ∆, there exists N = f (P, ε,∆) such that the above scheduler
over-approximates system behaviors given by deviating clocks.

Ocan Sankur Model Checking of Distributed Protocols 20 / 30

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler

– Each process is activated with “identical” period P ± ε

– Not synchronous, not completely asynchronous neither

Approximate Synchrony (Caspi 2000, Desai et al. CAV2015)
Fix parameter ∆. Let Ni (t) denote the number of times process i has
been activated at time t.

Scheduler: Allow all interleavings between processes so that
|Ni (t)− Nj(t)| ≤ ∆ for all i , j , t.

Given P, ε, ∆, there exists N = f (P, ε,∆) such that the above scheduler
over-approximates system behaviors given by deviating clocks.

Ocan Sankur Model Checking of Distributed Protocols 20 / 30

Asynchrony and Clock Deviations

Distributed system: we need to define a scheduler

– Each process is activated with “identical” period P ± ε

– Not synchronous, not completely asynchronous neither

Approximate Synchrony (Caspi 2000, Desai et al. CAV2015)
Fix parameter ∆. Let Ni (t) denote the number of times process i has
been activated at time t.

Scheduler: Allow all interleavings between processes so that
|Ni (t)− Nj(t)| ≤ ∆ for all i , j , t.

Given P, ε, ∆, there exists N = f (P, ε,∆) such that the above scheduler
over-approximates system behaviors given by deviating clocks.

Ocan Sankur Model Checking of Distributed Protocols 20 / 30

Summary of Abstractions and Specification

1 Unbounded variables and identifier variables
→ Nodes NONFLEAD become anonymous

2 Shortest-Path Abstraction:
FL NFL NFL

3 Approximately Synchronous Scheduler
∆ = 1,P ∈ [29.7, 30.3] for N = 110 steps

4 Specification: Given D, find N such that

AD |= F≤NG(
D∧

i=1
Pi.myleader = FLEAD)

Ocan Sankur Model Checking of Distributed Protocols 21 / 30

Experimental Results for FTSP

Tool: A custom algorithm implemented within NuSMV
https://github.com/osankur/nusmv/tree/ftsp

(Other tools we tried: Spin, CMurphi, ITS-tools)
synchronous asynchronous

D N time N time
1 8 0s 8 0s
2 14 1s 14 1s
3 23 1s 25 28s
4 35 3s 39 130s
5 54 16s 63 65mins
6 67 76s TO TO
7 107 13mins TO TO

D: Max distance from FLEAD
N: Number of steps to convergence

E.g. 2D grids with 169 nodes, or 3D grids in 2197 nodes.
– Clock rates within 1± 10−2 (period [29.7, 30.3]).

Error recovery Our models are initialized at arbitrary states: in case of any
failure, the protocol recovers in N steps

Next: Incremental verification technique + a custom algorithm

Ocan Sankur Model Checking of Distributed Protocols 22 / 30

https://github.com/osankur/nusmv/tree/ftsp

Optimization: Incremental Verification Strategy

Observation

The abstraction AD proves the property for all nodes
within D of the future leader in all network topologies.

FL NFL NFL

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D
For all D = 1...,

Initialize the system AD nondeterministically at states where the
(D − 1)-radius already satisfies ∧i≤D−1Pi.myleader = FLEAD.
Model check AD |= F≤ND G(PD.myleader = FLEAD).

Ocan Sankur Model Checking of Distributed Protocols 23 / 30

Optimization: Incremental Verification Strategy

Observation

The abstraction AD proves the property for all nodes
within D of the future leader in all network topologies.

FL NFL NFL

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D
For all D = 1...,

Initialize the system AD nondeterministically at states where the
(D − 1)-radius already satisfies ∧i≤D−1Pi.myleader = FLEAD.
Model check AD |= F≤ND G(PD.myleader = FLEAD).

Ocan Sankur Model Checking of Distributed Protocols 23 / 30

Optimization: Incremental Verification Strategy

Observation

The abstraction AD proves the property for all nodes
within D of the future leader in all network topologies.

FL NFL NFL

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D
For all D = 1...,

Initialize the system AD nondeterministically at states where the
(D − 1)-radius already satisfies ∧i≤D−1Pi.myleader = FLEAD.
Model check AD |= F≤ND G(PD.myleader = FLEAD).

Substantial gain in time and memory: processes 1, . . . ,D − 1 are simplified
since they were proven to satisfy the spec forever

Ocan Sankur Model Checking of Distributed Protocols 23 / 30

Optimization: Incremental Verification Strategy

Observation

The abstraction AD proves the property for all nodes
within D of the future leader in all network topologies.

FL NFL NFL

D-radius: the nodes within a distance of D from the future leader.

Incremental Verification For Increasing D
For all D = 1...,

Initialize the system AD nondeterministically at states where the
(D − 1)-radius already satisfies ∧i≤D−1Pi.myleader = FLEAD.
Model check AD |= F≤ND G(PD.myleader = FLEAD).

Then in N = N1 + N2 + . . .+ ND number of steps, the whole D-radius
agree on FLEAD

Ocan Sankur Model Checking of Distributed Protocols 23 / 30

Optimization: Semi-Algorithm for F≤NGφ

Standard algorithm to check FGφ
Convert formula to Buchi automaton, forward exploration, keep all seen
states to guarantee termination.
– R1,R2, . . . ,Rk where Ri are states reachable in i steps
– Stop when Rk ⊆ ∪iRi , or when an accepting lasso is found

– Even the lasso starts after 1000 steps, we keep R1, . . . ,R1000.
– Consumes memory and impairs BDD reordering
– To compute best N, need to run the tool log(N) times

Custom Semi-Algorithm
– Start exploring but forget previous states: Ri (delete R1, . . . ,Ri−1)
– Whenever Ri ⊆ φ, start remembering Ri ,Ri+1, . . . ,Rj

– If Rj ⊆ ∪i≤k≤jRk , RETURN i
– If Rj 6⊆ φ, delete Ri , . . . ,Rj−1, and continue

Significant performance improvement

Ocan Sankur Model Checking of Distributed Protocols 24 / 30

Optimization: Semi-Algorithm for F≤NGφ

Standard algorithm to check FGφ
Convert formula to Buchi automaton, forward exploration, keep all seen
states to guarantee termination.
– R1,R2, . . . ,Rk where Ri are states reachable in i steps
– Stop when Rk ⊆ ∪iRi , or when an accepting lasso is found

– Even the lasso starts after 1000 steps, we keep R1, . . . ,R1000.
– Consumes memory and impairs BDD reordering
– To compute best N, need to run the tool log(N) times

Custom Semi-Algorithm
– Start exploring but forget previous states: Ri (delete R1, . . . ,Ri−1)
– Whenever Ri ⊆ φ, start remembering Ri ,Ri+1, . . . ,Rj

– If Rj ⊆ ∪i≤k≤jRk , RETURN i
– If Rj 6⊆ φ, delete Ri , . . . ,Rj−1, and continue

Significant performance improvement

Ocan Sankur Model Checking of Distributed Protocols 24 / 30

Optimization: Semi-Algorithm for F≤NGφ

Standard algorithm to check FGφ
Convert formula to Buchi automaton, forward exploration, keep all seen
states to guarantee termination.
– R1,R2, . . . ,Rk where Ri are states reachable in i steps
– Stop when Rk ⊆ ∪iRi , or when an accepting lasso is found

– Even the lasso starts after 1000 steps, we keep R1, . . . ,R1000.
– Consumes memory and impairs BDD reordering
– To compute best N, need to run the tool log(N) times

Custom Semi-Algorithm
– Start exploring but forget previous states: Ri (delete R1, . . . ,Ri−1)
– Whenever Ri ⊆ φ, start remembering Ri ,Ri+1, . . . ,Rj

– If Rj ⊆ ∪i≤k≤jRk , RETURN i
– If Rj 6⊆ φ, delete Ri , . . . ,Rj−1, and continue

Significant performance improvement
Ocan Sankur Model Checking of Distributed Protocols 24 / 30

Non-Interference Lemma for FTSP
FL NFL NFL

Counterexample to FGφ
– S(C1) = S(C2) = S(C3) = FL, P1.myseq = P2.myseq = P3.myseq=1.
– (Some outside node sends a message (FLEAD, 32) to P3)
– S(C1) = S(C2) = S(C3) = FL, P1.myseq = P2.myseq = 1, P3.myseq=32.
– (P3 ignores all messages from the root until its sequence number reaches 32)
→ P3 timeouts before this happens

– S(C1) = S(C2) = FL, S(C3) = NFL, P1.myseq = P2.myseq = 1, P3.myseq=0.

Non-interference lemma
ψ = ∀i , Pi.myleader = FL⇒ Pi.myseq ≤ P1.myseq.

Theorem [McMillan 2001, Chou, Mannavan, Park 2004]
If all transitions of the concrete model are strengthened by non-interference lemma ψ,
then both the specification φ, and the lemma ψ can be model checked in the absraction
of the strengthening.

Ocan Sankur Model Checking of Distributed Protocols 25 / 30

Non-Interference Lemma for FTSP
FL NFL NFL

Counterexample to FGφ
– S(C1) = S(C2) = S(C3) = FL, P1.myseq = P2.myseq = P3.myseq=1.
– (Some outside node sends a message (FLEAD, 32) to P3)
– S(C1) = S(C2) = S(C3) = FL, P1.myseq = P2.myseq = 1, P3.myseq=32.
– (P3 ignores all messages from the root until its sequence number reaches 32)
→ P3 timeouts before this happens

– S(C1) = S(C2) = FL, S(C3) = NFL, P1.myseq = P2.myseq = 1, P3.myseq=0.

Non-interference lemma
ψ = ∀i , Pi.myleader = FL⇒ Pi.myseq ≤ P1.myseq.

Theorem [McMillan 2001, Chou, Mannavan, Park 2004]
If all transitions of the concrete model are strengthened by non-interference lemma ψ,
then both the specification φ, and the lemma ψ can be model checked in the absraction
of the strengthening.

Ocan Sankur Model Checking of Distributed Protocols 25 / 30

Conclusion

Few results on parameterized model checking of
non-identical non-symmetric systems with arbitrary topologies
Decidability versus efficiency
An efficient solution that combines several ideas
Other protocols whose spec depends on an information being
propagated

Next objectives:
Also prove clock precision bounds under hypotheses on environment
conditions
Extend the theory of abstraction & refinement to probabilistic systems
Automatize abstractions

Ocan Sankur Model Checking of Distributed Protocols 26 / 30

Related Works

Parameterized symmetric systems: cache coherence protocols
Isolating two components (among K), and applying existential
abstraction

FLASH Cache coherence protocol [McMillan 2001].

Counter Abstraction: Count how many components are at a given
state, and abstract as {0, 1,∞}

[Pnueli, Xu, Zuck 2002]
Environment Abstraction: the isolated components are seen as
reference points and can change

[Clarke, Talupur, Veith 2008]
Similar abstraction + refinement by non-interference lemmas

[Chou, Mannava, Park 2004]
– Given a spurious counterexample, guess an invariant φ that excludes it
– The model is constrained by φ which yields a finer abstraction
– “Lemma” φ itself can be proven on the constrained model

Automatic computation of the best refinement [Bingham 2008]

Ocan Sankur Model Checking of Distributed Protocols 27 / 30

Related Works

Parameterized symmetric systems: cache coherence protocols
Isolating two components (among K), and applying existential
abstraction

FLASH Cache coherence protocol [McMillan 2001].
Counter Abstraction: Count how many components are at a given
state, and abstract as {0, 1,∞}

[Pnueli, Xu, Zuck 2002]

Environment Abstraction: the isolated components are seen as
reference points and can change

[Clarke, Talupur, Veith 2008]
Similar abstraction + refinement by non-interference lemmas

[Chou, Mannava, Park 2004]
– Given a spurious counterexample, guess an invariant φ that excludes it
– The model is constrained by φ which yields a finer abstraction
– “Lemma” φ itself can be proven on the constrained model

Automatic computation of the best refinement [Bingham 2008]

Ocan Sankur Model Checking of Distributed Protocols 27 / 30

Related Works

Parameterized symmetric systems: cache coherence protocols
Isolating two components (among K), and applying existential
abstraction

FLASH Cache coherence protocol [McMillan 2001].
Counter Abstraction: Count how many components are at a given
state, and abstract as {0, 1,∞}

[Pnueli, Xu, Zuck 2002]
Environment Abstraction: the isolated components are seen as
reference points and can change

[Clarke, Talupur, Veith 2008]

Similar abstraction + refinement by non-interference lemmas
[Chou, Mannava, Park 2004]

– Given a spurious counterexample, guess an invariant φ that excludes it
– The model is constrained by φ which yields a finer abstraction
– “Lemma” φ itself can be proven on the constrained model

Automatic computation of the best refinement [Bingham 2008]

Ocan Sankur Model Checking of Distributed Protocols 27 / 30

Related Works

Parameterized symmetric systems: cache coherence protocols
Isolating two components (among K), and applying existential
abstraction

FLASH Cache coherence protocol [McMillan 2001].
Counter Abstraction: Count how many components are at a given
state, and abstract as {0, 1,∞}

[Pnueli, Xu, Zuck 2002]
Environment Abstraction: the isolated components are seen as
reference points and can change

[Clarke, Talupur, Veith 2008]
Similar abstraction + refinement by non-interference lemmas

[Chou, Mannava, Park 2004]
– Given a spurious counterexample, guess an invariant φ that excludes it
– The model is constrained by φ which yields a finer abstraction
– “Lemma” φ itself can be proven on the constrained model

Automatic computation of the best refinement [Bingham 2008]
Ocan Sankur Model Checking of Distributed Protocols 27 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

System: Shared variables a, b and identical components C1, . . . ,Ck , . . .:

s t u err

b == 0, b := 1 a := 1
a == 0

b := 0 a := 0

Environment Abstraction: Keep variables a, b and one component C1
States are tuples: va,vb,q

Initial abstract state: 0,0,s represents all states

a = 0, b = 0, S(C1) = s, S(C2) = x2,S(C3) = x3, . . . ,S(Ck) = xk ,

for all k ≥ 1, and all x2, . . . , xk .

Existential Abstraction: va, vb, q → v ′a, v ′b, q′

Ocan Sankur Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

System: Shared variables a, b and identical components C1, . . . ,Ck , . . .:

s t u err

b == 0, b := 1 a := 1
a == 0

b := 0 a := 0

Environment Abstraction: Keep variables a, b and one component C1
States are tuples: va,vb,q

Initial abstract state: 0,0,s represents all states

a = 0, b = 0, S(C1) = s, S(C2) = x2,S(C3) = x3, . . . ,S(Ck) = xk ,

for all k ≥ 1, and all x2, . . . , xk .

Existential Abstraction: va, vb, q → v ′a, v ′b, q′

Ocan Sankur Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

System: Shared variables a, b and identical components C1, . . . ,Ck , . . .:

s t u err

b == 0, b := 1 a := 1
a == 0

b := 0 a := 0

Environment Abstraction: Keep variables a, b and one component C1
States are tuples: va,vb,q

Initial abstract state: 0,0,s represents all states

a = 0, b = 0, S(C1) = s, S(C2) = x2,S(C3) = x3, . . . ,S(Ck) = xk ,

for all k ≥ 1, and all x2, . . . , xk .

Existential Abstraction: va, vb, q → v ′a, v ′b, q′

Ocan Sankur Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

System: Shared variables a, b and identical components C1, . . . ,Ck , . . .:

s t u err

b == 0, b := 1 a := 1
a == 0

b := 0 a := 0

Environment Abstraction: Keep variables a, b and one component C1
States are tuples: va,vb,q

Initial abstract state: 0,0,s represents all states

a = 0, b = 0, S(C1) = s, S(C2) = x2,S(C3) = x3, . . . ,S(Ck) = xk ,

for all k ≥ 1, and all x2, . . . , xk .

Existential Abstraction: va, vb, q → v ′a, v ′b, q′

iff ∃ a transition in a concrete system that maps to this abstraction
Ocan Sankur Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

System: Shared variables a, b and identical components C1, . . . ,Ck , . . .:

s t u err

b == 0, b := 1 a := 1
a == 0

b := 0 a := 0

Environment Abstraction: Keep variables a, b and one component C1
States are tuples: va,vb,q

Initial abstract state: 0,0,s represents all states

a = 0, b = 0, S(C1) = s, S(C2) = x2,S(C3) = x3, . . . ,S(Ck) = xk ,

for all k ≥ 1, and all x2, . . . , xk .

Existential Abstraction: va, vb, q → v ′a, v ′b, q′

iff ∃k,∃x2, x ′2, . . . , xk , x ′k . (va, vb, q, x2, . . . , xk)→ (v ′a, v ′b, q′, x ′2, . . . , x ′k).
Ocan Sankur Model Checking of Distributed Protocols 28 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

s t u err
b == 0, b := 1 a := 1

a == 0

b := 0 a := 0

The Abstract System
00s 01t 11u 01err

01s 10s 01u · · ·

Counterexample present in all abstractions for all k ≥ 1
The following invariant explains why the counterex is spurious:

ψ = ∀i , j , i 6= j ⇒ ¬(S(Ci) ∈ {t, u} ∧ S(Cj) ∈ {t, u}).

Strengthened Abstraction: va, vb, q → v ′a, v ′b, q′

iff ∃k,∃x2, x ′2, . . . , xk , x ′k . (va, vb, q, x2, . . . , xk) |= ψ
and (va, vb, q, x2, . . . , xk)→ (v ′a, v ′b, q′, x ′2, . . . , x ′k).

Ocan Sankur Model Checking of Distributed Protocols 29 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

s t u err
b == 0, b := 1 a := 1

a == 0

b := 0 a := 0

The Abstract System
00s 01t 11u 01err

01s 10s 01u · · ·

Counterexample present in all abstractions for all k ≥ 1
The following invariant explains why the counterex is spurious:

ψ = ∀i , j , i 6= j ⇒ ¬(S(Ci) ∈ {t, u} ∧ S(Cj) ∈ {t, u}).

Strengthened Abstraction: va, vb, q → v ′a, v ′b, q′

iff ∃k,∃x2, x ′2, . . . , xk , x ′k . (va, vb, q, x2, . . . , xk) |= ψ
and (va, vb, q, x2, . . . , xk)→ (v ′a, v ′b, q′, x ′2, . . . , x ′k).

Ocan Sankur Model Checking of Distributed Protocols 29 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

s t u err
ψ, b == 0, b := 1ψ, a := 1

ψ, a == 0

ψ, b := 0 ψ, a := 0

The Abstract System
00s 01t 11u 01err

01s 10s 01u · · ·

Counterexample present in all abstractions for all k ≥ 1
The following invariant explains why the counterex is spurious:

ψ = ∀i , j , i 6= j ⇒ ¬(S(Ci) ∈ {t, u} ∧ S(Cj) ∈ {t, u}).

Strengthened Abstraction: va, vb, q → v ′a, v ′b, q′

iff ∃k,∃x2, x ′2, . . . , xk , x ′k . (va, vb, q, x2, . . . , xk) |= ψ
and (va, vb, q, x2, . . . , xk)→ (v ′a, v ′b, q′, x ′2, . . . , x ′k).

Ocan Sankur Model Checking of Distributed Protocols 29 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

s t u err

ψ, b == 0, b := 1 ψ, a := 1
ψ, a == 0

ψ, b := 0 ψ, a := 0

Remark
If ψ is invariant in the concrete system A (i.e. Reach(A) ⊆ ψ), then

strengthen(A, ψ) |= φ⇔ A |= φ

Is ψ an invariant?
For safety properties: strengthen(A, ψ) |= ψ ⇔ A |= ψ

So one can check this on the strengthened abstraction!

Verification task: abstract(strengthen(A, ψ)) |= G¬err ∧ ψ.

If there is again a spurious cex, then find ψ2, and check
abstract(strengthen(A, ψ ∧ ψ2)) |= G¬err ∧ ψ ∧ ψ2.
etc

Ocan Sankur Model Checking of Distributed Protocols 30 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

s t u err

ψ, b == 0, b := 1 ψ, a := 1
ψ, a == 0

ψ, b := 0 ψ, a := 0

Remark
If ψ is invariant in the concrete system A (i.e. Reach(A) ⊆ ψ), then

abstract(strengthen(A, ψ)) |= φ⇒ A |= φ

Is ψ an invariant?
For safety properties: strengthen(A, ψ) |= ψ ⇔ A |= ψ

So one can check this on the strengthened abstraction!

Verification task: abstract(strengthen(A, ψ)) |= G¬err ∧ ψ.

If there is again a spurious cex, then find ψ2, and check
abstract(strengthen(A, ψ ∧ ψ2)) |= G¬err ∧ ψ ∧ ψ2.
etc

Ocan Sankur Model Checking of Distributed Protocols 30 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

s t u err

ψ, b == 0, b := 1 ψ, a := 1
ψ, a == 0

ψ, b := 0 ψ, a := 0

Remark
If ψ is invariant in the concrete system A (i.e. Reach(A) ⊆ ψ), then

abstract(strengthen(A, ψ)) |= φ⇒ A |= φ

Is ψ an invariant?
For safety properties: strengthen(A, ψ) |= ψ ⇔ A |= ψ

So one can check this on the strengthened abstraction!

Verification task: abstract(strengthen(A, ψ)) |= G¬err ∧ ψ.

If there is again a spurious cex, then find ψ2, and check
abstract(strengthen(A, ψ ∧ ψ2)) |= G¬err ∧ ψ ∧ ψ2.
etc

Ocan Sankur Model Checking of Distributed Protocols 30 / 30

On Refinement with Non-Interference Lemmas [CMP 2004]

s t u err

ψ, b == 0, b := 1 ψ, a := 1
ψ, a == 0

ψ, b := 0 ψ, a := 0

Remark
If ψ is invariant in the concrete system A (i.e. Reach(A) ⊆ ψ), then

abstract(strengthen(A, ψ)) |= φ⇒ A |= φ

Is ψ an invariant?
For safety properties: strengthen(A, ψ) |= ψ ⇔ A |= ψ

So one can check this on the strengthened abstraction!

Verification task: abstract(strengthen(A, ψ)) |= G¬err ∧ ψ.

If there is again a spurious cex, then find ψ2, and check
abstract(strengthen(A, ψ ∧ ψ2)) |= G¬err ∧ ψ ∧ ψ2.
etc Ocan Sankur Model Checking of Distributed Protocols 30 / 30

	Introduction

